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Abstract

An unknown transient heat source in a three-dimensional participating medium is reconstructed from temperature

measurements using a Bayesian inference method. The heat source is modeled as a stochastic process. The joint pos-

terior probability density function (PPDF) of heat source values at consecutive time points is computed using the Bayes�
formula. The errors in thermocouple readings are modeled as independent identically distributed (i.i.d.) Gauss random

variables. �Maximum A Posteriori� (MAP) and posterior mean estimates of the heat source are then computed using a

Markov chain Monte Carlo (MCMC) simulation method. The designed MCMC sampler is composed of a cycle of sym-

metric MCMC kernels. To increase the sampling speed, a model-reduction technique is used in the direct computation

of temperatures at thermocouple locations given a guessed heat source, i.e. in the likelihood computation. Two typical

heat source profiles are reconstructed using simulated data to demonstrate the presented methodologies. The results

indicate that the Bayesian inference method can provide accurate point estimates as well as uncertainty quantification

to the solution of the inverse radiation problem.

� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Study of thermal radiation has been stimulated by a

wide range of applications including thermal control in

space technology, combustion, high temperature form-

ing and coating technology, solar energy utilization, high

temperature engine, furnace technology and other [1].

In participating media, radiation is accompanied by

heat conduction and convection. To simulate such proc-
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esses, a coupled system of partial differential equations

(PDEs) governing temperature and radiation intensity

evolution needs to be solved iteratively. Difficulties arise

in the solution of such systems because the heat flux con-

tributed by radiation varies nonlinearly with the temper-

ature, the radiation intensity varies in space and in

direction, and the radiation intensity equation is an inte-

gro-differential equation [2]. The direct radiation prob-

lem, in which the temperature distribution is computed

with prescribed thermal properties, source generation

and initial/boundary conditions, is often solved using a

combination of spatial discretization methods such as

finite volume or finite element methods (FEM) and

ordinate approximation such as PN and SN methods

[2]. The inverse radiation problem in a participating
ed.
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Nomenclature

A acceptance probability of MCMC

Cp thermal capacity

E expectation

F direct simulation solver

g heat source

ĝ estimate of heat source

G(Æ) spatial approximation of point heat source

h linear finite element basis function

I radiation intensity

Ih homogeneous part of I

II inhomogeneous part of I

Ib black body radiation intensity

k thermal conductivity

L number of MCMC samples

m dimension of h
M number of thermocouples

n total number of measurements

~n unit normal to the boundary vector

N number of measurement steps

Ne number of snapshots

p(Æ) probability density function

~qr radiative thermal flux

~r position vector

~s direction vector

S surface of 3D domain

t time

t̂ time of measurement

dt thermocouple sampling interval

dt time interval in the discretization of g

Dt time step size in direct simulation

T temperature

Th homogeneous part of T

TI inhomogeneous part of T

u random number

U standard uniform distribution

U(i) ith snapshot

V 3D domain

w direction weight in S4 method

W covariance matrix of MRF

test function in Galerkin formulationeW test function in SUPG formulation

Y temperature measurement vector

Greek symbols

d(Æ) Dirac delta function

� emissivity

h parametric form of unknown heat source

ĥ estimate of h
j absorption coefficient

k scaling constant of MRF

l eigenvalue in POD expansion

q mass density

r scattering coefficient

rb Stefan–Boltzmann constant

rq standard deviation of proposal distribution

rT standard deviation of x
x measurement noise

X solid angle

U kernel function of MRF

W eigenfunction of POD expansion

Superscripts

(i) ith iteration or ith time step

T transpose

* candidate

Subscripts

i ith component

i � j site neighborhood

max maximum

post posterior mean

MAP maximum a posteriori
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medium that is of interest here is defined as reconstruc-

tion of the heat source given temperature measurements

within the domain. Distinctly different from the well-

posed direct problem, this inverse problem is in general

ill-posed, i.e., its solution may not be unique and/or may

be unstable to small errors in the given data [3,4]. Special

techniques are thus required to compute solutions to

such inverse problems.

The usual solution approaches restate the inverse

problem as a least-squares minimization problem [5,6].

The objective function is formulated by minimizing the

error between the computed temperatures with guessed

inverse solution (in this work, a heat source) and the
temperature measurements at given thermocouple loca-

tions. The error can be defined using various norms

in either finite- or infinite-dimensional spaces [7,8].

Gradient optimization techniques are introduced, and

appropriate continuum or discrete sensitivity and/or

adjoint problems are required [9,10]. Other methods,

such as Monte Carlo method, have also been developed

for solving inverse radiation problems [11]. For review

of inverse techniques for heat transfer problems, one

can consult Alifanov [12] and Beck et al. [13]. The

ill-posedness of these inverse problems can be addres-

sed using appropriate regularization techniques in-

cluding Tikhonov regularization [14,15], the function
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Fig. 1. Schematic of the inverse radiation problem. The

objective is to compute the point heat source g(t) given initial

conditions, boundary conditions on the surface and tempera-

ture measurements at a number of points within the domain.
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specification method by Beck et al. [13], Zabaras and Liu

[16] or the iterative regularization technique by Alifanov

[12].

A new stochastic outlook to inverse thermal prob-

lems has recently been introduced using spectral stochas-

tic methods [17] and Bayesian inference [18]. Stochastic

inverse methods can account for uncertainties and are

able to provide point estimates to the inverse solution

with probability bounds [18]. In this work, we emphasize

the use of Bayesian statistical inference [18,19]. In Baye-

sian inference, a prior distribution model is combined

with the likelihood to formulate the posterior probabil-

ity density function (PPDF) [20,21]. The Bayesian infer-

ence approach provides a complete probabilistic

description of the unknown quantities given all related

observations. The method regularizes the ill-posed in-

verse problem through prior distribution modeling [22]

and in addition provides means to estimate the statistics

of uncertainties.

With the recent propagation of Markov chain Monte

Carlo (MCMC) simulation methods [23], the application

of Bayesian inference to engineering inverse problems

becomes tractable. MCMC provides large sample data

set drawn from the PPDF. These samples can be used

to approximate the expectation of any function of the

random unknown (heat source here). Running a Mar-

kov chain usually involves repetitive solutions of the di-

rect problem, which is not feasible for most nonlinear

transient problems. In such situations, reduced-order

models are needed [24,25]. One widely used approach

of model-reduction is the computation of the proper

orthogonal decomposition (POD) basis using the method

of snapshots [26,27].

In this work, a Bayesian inference method is used

to identify the strength of a transient heat source in a

participating medium in three-dimensions (3D) from

temperature measurements. An MCMC sampler is

designed to explore the posterior state space. The kernel

of the MCMC sampler is composed of a cycle of sym-

metric MCMC kernels.

In each computation of the likelihood, the direct

problem is solved using model-reduction. The remaining

of this paper is organized in the following sequence. Sec-

tion 2 introduces the inverse radiation problem. Section

3 briefly describes the full- and reduced-order finite ele-

ment models used for the direct analysis. The formula-

tion of the likelihood is presented in Section 4 together

with the prior distribution model and the PPDF under

a Bayesian inference framework. The design of the

MCMC sampler is discussed in Section 5 including the

exploration of the posterior state space. In Section 6,

two examples of reconstruction of step and triangular

heat source profiles are provided. Finally, Section 7 sum-

marizes the observations of this numerical study and

some related issues.
2. Heat source reconstruction in 3D participating media

In many high-temperature applications such as

industrial combustion chambers and nuclear reactors,

the strength of the heat source cannot be determined

explicitly. The development of inverse techniques, how-

ever, makes it possible to reconstruct the heat source

through temperature measurements at a few locations

within the domain. In this work, the situation where

thermal conduction and radiation occur simultaneously

in a participating medium with diffusively reflecting gray

boundaries is considered. The schematic of the problem

of interest is given in Fig. 1. Inside the 3D domain V,

heat conduction occurs simultaneously with absorption,

scattering and emission of the electromagnetic waves.

On the boundary surface S, the temperature is known

and the electromagnetic waves are diffusively reflected.

The transient heat source will be estimated through tem-

perature measurements at sensor (thermocouple) sites

within the domain. The governing equations for the tem-

perature and radiation intensity evolution in the domain

V are as follows:

qCp
oT
ot

¼ kr2T �r �~qr þ gðtÞGðx� x�; y � y�; z� z�Þ

ð1Þ

~s � rI þ ðjþ rÞI � r
4p

Z
4p
Ið~r;~s0ÞdX0 ¼ jIb ð2Þ

where Ib is the black body radiation intensity governed

by Planck function

Ib ¼
rbT 4

p
ð3Þ

and ~qr is the heat flux contributed by radiation

r �~qr ¼ 4pj Ib �
1

4p

Z
4p
Ið~r;~sÞdX

� �
ð4Þ
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On the boundary S, the following holds:

Ið~r;~sÞ ¼ �Ib þ
1� �

p

Z
~n�~s0<0

j~n �~s0 j Ið~r;~s0ÞdX0; ~n �~s > 0

ð5Þ

T ¼ T w ð6Þ

In the above equations, T and I denote the tem-

perature and radiation intensity, respectively, ~r is the

position vector, and ~s is the direction vector.

G(x � x*,y � y*,z � z*) is the spatial approximation

of a point heat source located at (x*,y*,z*). In this

work, a 3D Gaussian distribution function is used for

G. X stands for the solid angle over the entire space. q
is the density of the medium, Cp is the thermal capacity,

k is the thermal conductivity, and j, r, � are the absorp-
tion coefficient, scattering coefficient and boundary wall

emissivity, respectively. Finally, rb is the Stefan–Boltz-

mann constant and ~n is the unit normal vector on S

pointing into the domain.

In the inverse problem of interest, the heat source g(t)

is the main unknown. Its calculation becomes feasible by

providing the values of the temperature at a given num-

ber of locations within the domain as shown in Fig. 1.

Let Y denote the measured temperature data, i.e. Y ¼
½Y ð1Þ

1 ; Y ð1Þ
2 ; . . . ; Y ð1Þ

M ; Y ð2Þ
1 ; Y ð2Þ

2 ; . . . ; Y ð2Þ
M ; . . . ; Y ðNÞ

1 ; Y ðNÞ
2 ; . . . ;

Y ðNÞ
M �T, where

Y ðjÞ
i ¼ T ð~ri; t̂jÞ þ x ð7Þ

where i = 1, . . . ,M, j = 1, . . . ,N and t̂N ¼ tmax. M and N

are the number of thermocouples and number of meas-

urements at each site, respectively. x is the random

measurement noise. The inverse problem is then stated

as follows: find an estimate ĝðtÞ of the real heat source

g(t) such that the computed temperatures with this opti-

mal source estimate can match Y in some sense. For in-

stance, most deterministic approaches will solve for ĝðtÞ
by minimizing the least-squares error between Y and the

computed temperatures.
3. Direct simulation and reduced-order modeling

The direct problem can be solved using a combina-

tion of the finite element method (FEM) in space discre-

tization and the S4 method in ordinate discretization. It

is seen that Eq. (1) is a nonlinear partial differential

equation (PDE) and Eq. (2) has an integral term. They

are coupled by the expressions in Eqs. (3) and (4). The

iterative process at each time step to solve the coupled

Eqs. (1) and (2) is summarized next:

1. Set T ðiÞ
guess ¼ T ði�1Þ;

2. Substitute T ðiÞ
guess into Eq. (3) to compute Ib;
3. Solve Eq. (2) for I(i);

4. Use Eq. (4) to compute r �~qr;
5. Solve Eq. (1) and update T ðiÞ

guess with the solution;

6. If the solutions converged, set T ðiÞ
guess as T

(i) and save

I(i); otherwise, go to step 2.

7. Go to the next time step.

Here T(i) denotes the temperature solution at the ith time

step (note that T(0) is a known initial temperature field)

and T ðiÞ
guess is the guessed temperature solution. In each

iteration of the above procedure, the integro-differential

Eq. (2) is solved using the S4 method [2]. In this ap-

proach, the intensity I at each spatial point is discretized

into 24 directions. The integration over solid angles

(directions) is approximated as weighted sum in these

24 directions. The direction vectors and associated

weights are specified in [2]. In each direction, the govern-

ing equation for I can be written as follows:

~si � rI i þ ðjþ rÞI i �
r
4p

X24
j¼1

Ijð~rÞwj ¼ jIb ð8Þ

The associated boundary condition takes the following

form:

I i ¼ �Ib þ
1� �

p

X
fj:~n�~sj<0g

j~n �~sj j wjIj; ~n �~si > 0 ð9Þ

where wj is the weight associated with the jth direction.

For any given temperature field, 24 equations as Eq.

(8) with fixed direction vectors, ~si�s, need to be solved

iteratively to obtain I. It is noticed that Eq. (8) contains

an advection term~si � rI i, hence the streamline-upwind/

Petrov–Galerkin (SUPG) formulation [28] is used to de-

rive stabilized FEM equations. In summary, the weak

formulations of temperature Eq. (1) and intensity Eq.

(8) can be written as follows:Z
V
qCpT ðiÞW dvþ Dt

Z
V
krT ðiÞ � rW dv

¼ Dt
Z
V
ð�r �~qr þ gðtÞGðx� x�; y � y�; z� z�ÞÞW dv

þ
Z
V
qCpT ði�1ÞW dv ð10Þ

andZ
V
~si � rI i eW dvþ

Z
V
ðjþ rÞI i eW dv

¼
Z
V
jIb eW dvþ

Z
V

r
4p

X24
j¼1

Ijwj
eW dv; ð11Þ

where W and eW are the test (basis) functions for classi-

cal Galerkin and SUPG formulations, respectively.

Using the above direct simulation framework, the

total number of degrees-of-freedom for the system be-

comes N 3
n � 25, where Nn is the number of nodes in each
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coordinate. Also note that there are two iteration loops

in each time step. Thus, it is expected that the above full-

order direct model solver will be computationally inten-

sive. To solve the stochastic inverse problem, a large

number of direct simulations is required. Therefore,

reduced-order modeling needs to be introduced for the

direct simulation.

For the convenience of implementation, the direct

problem is separated into an inhomogeneous part

(accounting for the temperature boundary condition

on S) and a homogeneous part (with zero applied tem-

perature on S), i.e. T = TI + Th and I = II + Ih. These

fields are defined as follows:

For the inhomogeneous fields TI and II:

kr2T I ¼ 0 ð12Þ

~s � rI I þ ðjþ rÞI I � r
4p

Z
4p
I Ið~r;~s 0ÞdX0 ¼ jI Ib ð13Þ

I Ib ¼
rbðT IÞ4

p
ð14Þ

I I ¼ �IIb þ
1� �

p

Z
~n�~s0<0

j~n �~s 0 j I Ið~r;~s 0ÞdX0; ~n �~s > 0

ð15Þ

T I ¼ T w on S ð16Þ

For the homogeneous fields Th and Ih:

qCp
oT h

ot
¼ kr2T h �r �~qr þ gðtÞGðx� x�; y � y�; z� z�Þ

ð17Þ

~s � rIh þ ðjþ rÞIh � r
4p

Z
4p
Ihð~r;~s 0ÞdX0 ¼ jIb � jI Ib

ð18Þ

Ih ¼ 1� �

p

Z
~n�~s 0<0

j~n �~s 0 j Ihð~r;~s 0ÞdX0; ~n �~s > 0 ð19Þ

T h ¼ 0 on S ð20Þ

The reduced-order models are constructed for homo-

geneous Th and Ih only since the steady state Eqs. (12)–

(16) only need to be solved once in the inverse procedure.

The POD method is considered in the current work

for the reduced-order modeling. In this approach, the di-

rect simulation result at each time step is expressed as a

linear combination of a set of orthonormal basis func-

tions. The coefficients associated with each basis function

are computed from the solution of ordinary differential

equations (ODEs) derived by Galerkin projection. The

basis functions can be extracted from computational or

experimental snapshots available in a database through

solving the following eigenvalue problem [26]:
1

N e

XN e

i¼1

Z
V
U ðiÞU ðiÞð~r0ÞWð~r0Þdv0 ¼ lW ð21Þ

where U(i) is the ith field function (temperature or inten-

sity field) from the database, Ne is the number of snap-

shots used, l is the eigenvalue of operator KW ¼
1
N e

PN e

i¼1

R
V U

ðiÞU ðiÞð~r 0ÞWð~r 0Þdv0 and W is the correspond-

ing eigenfunction. In this study, the basis functions are

obtained using �the method of snapshots� as follows:

• Take an ensemble set fU ð1Þ;U ð2Þ; . . . ;U ðN eÞg, where

U(i) is the full-model solution of the PDEs at the ith

time step. For temperature, U(i) is in fact Th

(t = iDt). For intensity, U(i) is Ih(t = iDt).
• Solve the eigenvalue problem CV = Vl, where C is a

Ne · Ne matrix with Cij ¼ 1
N e

R
V U

ðiÞU ðjÞdv; l is a

Ne · Ne diagonal matrix with the ith diagonal entry

li is the ith eigenvalue of C, and the corresponding

eigenvector Vi is the ith column of Ne · Ne matrix V.

• Compute the basis functions as Wi ¼
PN e

j¼1V iðjÞU ðjÞ=
ðN eliÞ.

The set {W1,W2, . . . ,WNe} is orthonormal [26]. Note

that the intensity Ih is a function of both space and ori-

entation, therefore, the volume integration in Eq. (21)

and the followed eigenvalue analysis should be replaced

with �V�4pdvdX for model reduction of Ih. Finally note

that the beauty of the POD-based model-reduction is

that in most situations, it is sufficient to take only a small

number of basis functions (those corresponding to the

larger eigenvalues). Convergence and optimality proper-

ties of POD expansions can be found in [25].

Let fWT
1 ;W

T
2 ; . . . ;W

T
KT
g denote the basis functions of

Th and fWI
1;W

I
2; . . . ;W

I
KI
g denote the basis functions of

Ih, where KT and KI are the number of basis functions

used for expanding temperature and intensity fields,

respectively. The solutions of the reduced-order model

are written as follows:

T hðt;~rÞ ¼
XKT

i¼1

aiðtÞWT
i ð~rÞ ð22Þ

Ihðt;~r;~sÞ ¼
XKI

i¼1

biðtÞWI
i ð~r;~sÞ ð23Þ

Substituting the above expressions into Eqs. (17) and

(18), the following ODEs are obtained:

Mj
daj
dt

þ
XKT

i¼1

Hjiai ¼ �Sj þ QjgðtÞ; j ¼ 1 : KT ð24Þ

XKI

Ajibi �
XKI

Bjibi ¼ Dj; j ¼ 1 : KI ð25Þ
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Fig. 2. Basis functions and neighbor sites in the discretization

of ĝ.
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where the following definitions have been introduced:

Mj ¼ qCp

Z
V
ðWT

j Þ
2
dv ð26Þ

Hji ¼ k
Z
V
rWT

j � rWT
i dv ð27Þ

Sj ¼
Z
V
ðr �~qrÞWT

j dv ð28Þ

Qj ¼
Z
V
WT

j Gðx� x�; y � y�; z� z�Þdv ð29Þ

Aji ¼
Z
V

Z
4p
fð~s � rWI

i ÞWI
j þ ðjþ rÞWI

iW
I
jgdXdv ð30Þ

Bji ¼
Z
V

Z
4p

Z
4p
WI

idX
0

� �
WI

j

� �
dXdv ð31Þ

Dj ¼
Z
V

Z
4p
ðjIb � jI IbÞWI

jdXdv ð32Þ

Solving Eqs. (24) and (25), the reduced-order solu-

tion can be obtained as follows:

T ¼ T I þ
XKT

i¼1

aiW
T
i ð33Þ

I ¼ I I þ
XKI

i¼1

biW
I
i ð34Þ

It is seen that the total number of degree-of-freedom is

reduced to KT + KI, which is extremely small compared

to the full-ordermodel simulation. Using this reduced-or-

der solver for the direct analysis, we are now ready to

investigate the inverse problem of interest.
4. Bayesian inverse formulation

From a Bayesian point of view, the inverse solution is

not solely a point estimate ĝ but the probability density

function of ĝ given the observation Y. To introduce the

Bayesian formulation, the unknown heat source func-

tion is first discretized using linear finite element basis

functions in time as follows:

ĝðtÞ ¼
Xm
i¼1

hiðtÞhi ð35Þ

where hi�s are as shown in Fig. 2, hi�s are the correspond-
ing nodal values of ĝ and m is the number of basis func-

tions used.

The inverse problem is then transformed to the esti-

mation of the joint distribution of a stochastic process

{hi, i = 1:m}. The probability density function of h (vec-

tor form of {hi, i = 1:m}) given Y can be written accord-

ing to the Bayes�s formula as:
pðh j Y Þ ¼ pðY j hÞpðhÞ
pðY Þ ð36Þ

where p(hjY) is called the posterior probability density

function (PPDF), p(Yjh) is the likelihood function and

p(h) is the prior distribution. Once the PPDF is known,

various point estimates can be computed such as the

�Maximum A Posteriori� (MAP) estimate:

ĥMAP ¼ augmaxh pðh j Y Þ ð37Þ

and the posterior mean estimate

ĥpostmean ¼ E h j Y ð38Þ
In general, the probability p(Y) is not explicit and is

rather difficult to compute. However, as a normalizing

constant, the knowledge of p(Y) can be avoided if the

posterior state space can be explored up to the normal-

izing constant. This is actually true for the numerical

sampling strategies adopted in the current work. There-

fore, the PPDF can be evaluated as

pðh j Y Þ / pðY j hÞpðhÞ ð39Þ

The likelihood function can be obtained from the

following relationship:

Y ¼ F ðhÞ þ x ð40Þ

where F is the a numerical solver that computes the tem-

peratures at thermocouple locations given the heat

source using the reduced-order model introduced in

the previous section. Fi represents the temperature at

the same location and time as Yi does. In this work,

we regard measurement errors (x) as independent iden-
tically distributed (i.i.d.) Gauss random variables with

zero mean and standard deviation (std) rT. It is assumed

that the numerical errors are much less in magnitude

than measurement errors. Subsequently, the likelihood

can be written as

pðY j hÞ ¼ 1

ð2pÞn=2rn
T

exp �ðY � F ðhÞÞTðY � F ðhÞÞ
2r2

T

( )
ð41Þ

The prior distribution reflects the knowledge, if there

is any, of the heat source, before Y is gathered. For in-
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stance, it can be the estimate of p(h) resulting from pre-

vious experiments or simulations. From an inverse point

of view, the prior distribution model provides regulari-

zation to the ill-posed inverse problem [18]. In the

current study, a pair-wise Markov random field

(MRF) [29] is adopted for the prior modeling of h. In
general, the MRF can be mathematically expressed as

follows:

pðhÞ / exp �
X
i�j

W ijUðcðhi � hjÞÞ
( )

ð42Þ

where c is a scaling parameter, U is an even function that

determines the specific form of the MRF, the summation

is over all pairs of sites i � j that are defined as neighbors

as shown in Fig. 2, and W0
ijs are specified nonzero

weights [21]. Let UðuÞ ¼ 1
2
u2, the MRF can then be

rewritten as

pðhÞ / km=2 exp � 1

2
khTW h

� �
ð43Þ

In the one-parameter model of Eq. (43), the entries of

the m · m matrix W are determined as, Wij = ni if i = j,

Wij = �1 if i and j are adjacent, and as 0 otherwise. ni
is the number of neighbors adjacent to site i. k is a scal-

ing constant. This MRF model is equivalent to Tikho-

nov regularization provided the measurement errors

are Gaussian and the objective is to maximize the poste-

rior probability (MAP) [18].

With the specified likelihood function in Eq. (41) and

prior distribution in Eq. (43), the PPDF for the inverse

problem can then be formulated as

pðh j Y Þ / exp � 1

2r2
T

½F ðhÞ � Y �T½F ðhÞ � Y �
� �

� exp � 1

2
khTW h

� �
ð44Þ

In the above formulation, all the normalizing con-

stants are neglected because the numerical algorithm

introduced in later section allows to explore the poste-

rior state space without knowing these constants. Eq.

(44) is the Bayesian formulation investigated for the in-

verse radiation problem of interest. Both point estimates

of MAP Eq. (37) and posterior mean Eq. (38) and prob-

ability bounds of the posterior distributions are com-

puted based on this formulation.
o t

400kW/m3

0.05s0.01s 0.04s

80kW/m3

Fig. 4. Profile of the step heat source.
5. MCMC sampler

For point estimates like MAP, deterministic optimi-

zation algorithms such as the conjugate gradient method

can be used to find the approximate solutions. However,

for obtaining the posterior mean estimate, or for esti-

mating higher order statistics of the random unknown,

statistical sampling algorithms such as Markov chain
Monte Carlo (MCMC) simulation must be introduced

to explore the posterior state space.

The idea of general Monte Carlo simulation is to

approximate the expectation or higher order statistics

of any function f(h) by the sample mean and sample sta-

tistics from a large set of i.i.d. samples {h(i), i = 1:L}

drawn from the target distribution p(h) (PPDF in the

current example), where L is the size of the sample set.

Then by the strong law of large numbers, the following

convergence holds:

ELf ðhÞ ¼
1

L

XL

i¼1

f ðhðiÞÞ 7!
L!1

Ef ðhÞ ¼
Z

f ðhÞpðhÞdh

ð45Þ

Obviously, the posterior mean estimate of Eq. (44) can

be obtained through the above approximation. The

MAP estimate can be approximated as:

ĥMAP ¼ argmax
hðiÞ

pðhðiÞÞ ð46Þ

For Eq. (44), the key step in Monte Carlo simulation

is to draw the sample set from this high dimensional and

implicit distribution function. MCMC provides such
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sampling strategy using the Markov chain mechanism

[23,30]. Only the basic form of MCMC, the Metropo-

lis–Hastings (MH) algorithm [31], is reviewed here.
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Fig. 5. Homogeneous intensity fields on y = 0.5 along directions

0.2958759] for step heat source: (a) t = 0.005s; (b) t = 0.01s; (c) t = 0
1. Initialize h(0)

2. For i = 0: Nmcmc � 1

— sample u � U(0,1)
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— sample h(*) � q(h(*)jh(i))

— if u < A hð�Þ; hðiÞ
� �

¼ min 1; pðh
ð�ÞÞqðhðiÞjhð�ÞÞ

pðhðiÞÞqðhð�Þ jhðiÞÞ

n o
h(i + 1) = h(*)

— else

h(i + 1) = h(i)

In the above algorithm, Nmcmc is the total number

of runs, u is a random number generated from standard

uniform distribution U(0,1), p(h) is the target distribu-

tion (PPDF here) and q(*ji) is a proposal distribution

that has standard form and generates candidate sample

conditional on the previous sample. By its design, the

algorithm guarantees that the samples will converge to

the target distribution for any proposal distribution.

However, careful design of q(*ji) can accelerate conver-

gence. Once convergence of the chain is achieved, the

samples obtained thereafter can be regarded to belong

to the target distribution. In principle, if the full condi-

tional distribution of each component hi is available

and in a standard form, it is advantageous to use the

Gibbs sampler, which uses the full conditional distribu-

tion as the proposal distribution. However, this is not

feasible for Eq. (44) since F(h) is implicit.
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Fig. 6. Homogeneous temperature fields on y = 0.5 for step heat sou
In this study, a modified MH sampler is designed

which takes advantage of the idea of Gibbs sampler,

namely, to update the vector h one component at each

time. The following notation is introduced:

hðiþ1Þ
�j ¼ fhðiþ1Þ

1 ; hðiþ1Þ
2 ; . . . ; hðiþ1Þ

j�1 ; hðiÞjþ1; . . . ; h
ðiÞ
m g

in which, the superscript (i) refers to the ith sample and

the subscript j refers to the jth component. The sampler

is designed as follows:

1. Initialize h(0)

2. For i = 0: Nmcmc � 1

— For j = 1:m

— sample u � U(0,1)

— sample hð�Þj � qjðh
ð�Þ
j j hðiþ1Þ

�j ; hðiÞj Þ
— if u < Aðhð�Þj ; hðiÞj Þ

hðiþ1Þ
j ¼ hð�Þj

— else

hðiþ1Þ
j ¼ hðiÞj ,

where Aðhð�Þj ; hðiÞj Þ ¼ min 1;
pðhð�Þj jhðiþ1Þ

�j ÞqðhðiÞj jhð�Þj ;hðiþ1Þ
�j Þ

pðhðiÞj jhðiþ1Þ
�j Þqðhð�Þj jhðiÞj ;hðiþ1Þ

�j Þ

� �
and
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rce: (a) t = 0.005s (b) t = 0.01s; (c) t = 0.025s and (d) t = 0.05s.
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qjðh
ð�Þ
j j hðiþ1Þ

�j ; hðiÞj Þ ¼ 1ffiffiffiffiffiffi
2p

p
rqj

exp � 1

2r2
qj
ðhð�Þj � hðiÞj Þ2

( )
ð47Þ

with rqj is the std of the jth proposal distribution. The

reason for updating a single component of h at each

MCMC step is to improve the acceptance probability.

In fact, by updating the entire vector at the same time,

it is rather difficult to get the candidate accepted. This

sampler is essentially a cycle of m symmetric MCMC

samplers [23].

Since each run of above MH step requires a direct

computation of the transient temperature field, it is

now clear that model-reduction is essential.
6. Numerical examples

A numerical example is presented in this section to

demonstrate the developed methodologies. The example

considered is similar to that discussed in Park and Sung

[24] but with different spatial approximation of the point

heat source and with a reduced number of thermocou-
s= [0.9082483 0.2958759
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Fig. 7. Eigenfunctions of Ih on y = 0.5 along direction [0.908

4.693608e�01 (c) k6 = 5.397338�04.
ples. The schematic of the problem is shown in Fig. 3.

The boundary conditions associated with Eqs. (1) and

(2) are the following:

T ¼ 800K on x ¼ 0; 1; y ¼ 0; 1; z ¼ 0; 1 ð48Þ

Ið~r;~sÞ ¼ �Ib þ
1� �

p

Z
~n�~s0<0

j~n �~s0 j Ið~r;~s0ÞdX0; ~n �~s > 0

on x ¼ 0; 1; y ¼ 0; 1; z ¼ 0; 1 ð49Þ

Three thermocouples are mounted at 1 � (0.5,0.5,0.45),

2 � (0.5,0.5,0.4) and 3 � (0.5,0.5,0.35), respectively, as

seen in Fig. 3. The heat source is located at

(0.5,0.5,0.5). The spatial distribution of the heat source

is approximated as follows:

Gðx� x�; y � y�; z� z�Þ

¼ exp � 1

0:052
ðx� 0:5Þ2ðy � 0:5Þ2ðz� 0:5Þ2

� �
ð50Þ

The material properties are taken as follows: q = 0.4kg/

m3, Cp = 1100J/kgK, k = 44W/mK, j = 0.5, r = 0.5 and

� = 0.5. The steady-state solution when g(t) = 80kW/m3

and
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Gðx� x�; y � y�; z� z�Þ

¼ exp � 1

0:252
ðx� 0:5Þ2ðy � 0:5Þ2ðz� 0:5Þ2

� �
ð51Þ

is taken as the initial condition.

With the above specified conditions and a step heat

source profile of g(t) as shown in Fig. 4, the full-order

direct model is first solved on a 26 · 26 · 26 grid from

t = 0 to t = 0.05s at 100 time steps. Fig. 5 shows the

computed homogeneous radiation intensities on cross

section y = 0.5 at different times along the specified

directions. The homogeneous temperature fields on the

same cross section at different times are plotted in Fig. 6.

All 100 temperature and intensity fields are recorded

as snapshots to obtain the eigenfunctions (Ne = 100).

Eigenfunctions corresponding to the first six largest

eigenvalues are used in the reduced-order model

(KT = KI = 6). Fig. 7 shows the first, third and sixth

eigenfunctions of Ih on y = 0.5 along the specified direc-

tion. The first, third and sixth eigenfunctions of Th on

y = 0.5 are plotted in Fig. 8. To verify the accuracy of

the POD method, the temperature fields on y = 0.5 ob-

tained by solving the reduced-order model with a heat

source as in Fig. 4 are given in Fig. 9. Fig. 10 shows
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Fig. 8. Eigenfunctions of Th on y = 0.5: (a) k1 = 21.98019
the evolution of the temperature at the thermocouple

locations computed by both full-order and reduced-

order model simulations. It is obvious that the two

solutions are almost indistinguishable.

To demonstrate the Bayesian method for inverse

reconstruction of the heat source profile of Fig. 4, simu-

lation data are generated by adding Gauss random noise

with zero mean and standard deviation rT to the full-or-

der direct model solution at the thermocouple locations.

For all following cases, the temperature is assumed to be

measured from t = 0 to t = 0.05s with a sampling inter-

val dt = 0.001s, hence, there are totally 150 measure-

ments for each case. Twenty-six basis functions are

used in the discretization of ĝðtÞ with equal step size of

dt = 0.002s.

To obtain a good starting point for the MH sam-

pling, an initialization step is first conducted by running

the sampling algorithm while solely increasing the likeli-

hood. A few hundred runs of this procedure is enough to

provide a good initial guess of h.
Fig. 11 plots the MAP estimates of the step heat

source using MCMC samples when rT takes different

values. It is seen that the MAP estimates are stable to

various magnitudes of errors. In Fig. 12, the posterior
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; (b) k3 = 2.13685e�03 and (c) k6 = 5.771976e�07.
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Fig. 9. Homogeneous temperature field computed using the POD method on y = 0.5 for step heat source: (a) t = 0.005s; (b) t = 0.01s;

(c) t = 0.025s and (d) t = 0.05s.
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mean estimate when rT = 0.01 is plotted. The estimates

are achieved using 10000 converged MCMC samples.

The upper and lower bounds plotted in the same figure

are the values at three standard deviations from the sam-

ple mean, which is an indication of the highest density re-

gion of the posterior state space. The rqj used in the
proposal distribution is 1% of the magnitude of hðiÞj . This

is to guarantee that the proposal distribution can fully

explore the posterior state space while concentrating on

the highest density region. The regularization constant,

k is chosen to be 8.0e�9, 5.0e�9 and 2.0e�9, respectively

for the above three cases by using the method described
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in [18] (selecting the range of regularization parameter

within which the computed point estimate remains prac-

tically unchanged). The regularization parameter k can

be treated as a hyper-parameter in a hierarchical Baye-

sian formulation thus avoiding any need for its priori

selection. This approach, however, was not followed here

to limit the discussion to the fundamental aspects of

Bayesian inference. The overall acceptance ratio for the

chain used in Fig. 12 is around 77.5%.

A triangular profile of heat source as shown in Fig. 13

is also reconstructed following the same procedure as in

the earlier example including using the POD basis gener-

ated earlier with snapshots from the step heat source

problem. Fig. 14 plots the MAP estimates of triangular

heat source when rT has different values. It is again seen
that the estimates are relatively stable to the change of

magnitude of noise. Fig. 15 plots the posterior mean esti-

mate when rT = 0.01. The same proposal distribution as

in the previous cases is used for this run. The overall

acceptance of the Markov chain is around 77.4%. It is

seen that with simulated noise, the posterior mean esti-

mate approximates the true heat flux quite well.
7. Discussion and conclusion

An inverse radiation problem is solved using a Baye-

sian statistical inference method. The posterior distribu-

tion of an unknown heat source strength is computed
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from temperature measurements by modeling the meas-

urement errors as i.i.d. Gauss random variables. The

Metropolis–Hastings algorithm was used to explore

the posterior state space and the POD method to reduce

the computational cost. A Markov random fields model

was used to regularize the ill-posed inverse problem. The

simulation results indicate that the method can provide

accurate point estimates of the unknown heat source

as well as complete statistical information. Although

the study is devoted toward point heat source estima-

tion, the methodologies can be extended to reconstruc-

tion of distributed heat sources as well by using

multiscale Markov random fields models in the prior

distribution modeling, where the inherent length scales

in temporal and spatial directions are explored. In the

situation where thermal properties are dependent on

the temperature and large temperature variation is ob-

served, the Bayesian computation is still applicable.

Finally, in the model reduction used in the recon-

struction of the step heat source in the first example,

for demonstration purposes the snapshots were gener-

ated using the same heat source profile. While the snap-

shots generated with the step heat source profile were

capable resolving the triangular heat source profile in

the second example, they may not be appropriate for

use in the identification of heat sources of other profiles

and a more comprehensive set of snapshots generated

from various heat source profiles will be needed. This

is indeed an open important research area of current

interest.
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